Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract When a star undergoes core collapse, a vast amount of energy is released in a ∼10 s long burst of neutrinos of all species. Inverse beta decay in the star’s hydrogen envelope causes an electromagnetic cascade that ultimately results in a flare of gamma rays—an “echo” of the neutrino burst—at the characteristic energy of 0.511 MeV. We study the phenomenology and detectability of this flare. Its luminosity curve is characterized by a fast, seconds-long rise and an equally fast decline, with a minute- or hour-long plateau in between. For a near-Earth star (distanceD≲ 1 kpc) the echo will be observable at near future gamma-ray telescopes with an effective area of 103cm2or larger. Its observation will inform us on the envelope size and composition. In conjunction with the direct detection of the neutrino burst, it will also give information on the neutrino emission away from the line of sight and will enable tests of neutrino propagation effects between the stellar surface and Earth.more » « less
-
Abstract We consider the combined effects that overshooting and the12C(α,γ)16O reaction rate have on variable white dwarf (WD) stellar models. We find that carbon–oxygen (CO) WD models continue to yield pulsation signatures of the current experimental12C(α,γ)16O reaction rate probability distribution function when overshooting is included in the evolution. These signatures hold because the resonating mantle region, encompassing ≃0.2M⊙in a typical ≃0.6M⊙WD model, still undergoes radiative helium burning during the evolution to a WD. Our specific models show two potential low-order adiabatic g-modes,g2andg6, that signalize the12C(α,γ)16O reaction rate probability distribution function. Both g-mode signatures induce average relative period shifts of ΔP/P= 0.44% and ΔP/P= 1.33% forg2andg6, respectively. We find thatg6is a trapped mode, and theg2period signature is inversely proportional to the12C(α,γ)16O reaction rate. Theg6period signature generally separates the slower and faster reaction rates, and has a maximum relative period shift of ΔP/P= 3.45%. We conclude that low-order g-mode periods from CO WDs may still serve as viable probes for the12C(α,γ)16O reaction rate probability distribution function when overshooting is included in the evolution.more » « less
-
Abstract We explore neutrino emission from nonrotating, single-star models across six initial metallicities and 70 initial masses from the zero-age main sequence to the final fate. Overall, across the mass spectrum, we find metal-poor stellar models tend to have denser, hotter, and more massive cores with lower envelope opacities, larger surface luminosities, and larger effective temperatures than their metal-rich counterparts. Across the mass–metallicity plane we identify the sequence (initial CNO →14N →22Ne →25Mg →26Al →26Mg →30P →30Si) as making primary contributions to the neutrino luminosity at different phases of evolution. For the low-mass models we find neutrino emission from the nitrogen flash and thermal pulse phases of evolution depend strongly on the initial metallicity. For the high-mass models, neutrino emission at He-core ignition and He-shell burning depends strongly on the initial metallicity. Antineutrino emission during C, Ne, and O burning shows a strong metallicity dependence with22Ne(α,n)25Mg providing much of the neutron excess available for inverse-βdecays. We integrate the stellar tracks over an initial mass function and time to investigate the neutrino emission from a simple stellar population. We find average neutrino emission from simple stellar populations to be 0.5–1.2 MeV electron neutrinos. Lower metallicity stellar populations produce slightly larger neutrino luminosities and averageβdecay energies. This study can provide targets for neutrino detectors from individual stars and stellar populations. We provide convenient fitting formulae and open access to the photon and neutrino tracks for more sophisticated population synthesis models.more » « less
-
An Expanded Set of Los Alamos OPLIB Tables in MESA: Type-1 Rosseland-mean Opacities and Solar ModelsAbstract We present a set of 1194 Type-1 Rosseland-mean opacity tables for four different metallicity mixtures. These new Los Alamos OPLIB atomic radiative opacity tables are an order of magnitude larger in number than any previous opacity table release, and span regimes where previous opacity tables have not existed. For example, the new set of opacity tables expands the metallicity range toZ= 10−6toZ= 0.2, which allows improved accuracy of opacities at low and high metallicity, increases the table density in the metallicity rangeZ= 10−4toZ= 0.1 to enhance the accuracy of opacities drawn from interpolations across neighboring metallicities, and adds entries for hydrogen mass fractions betweenX= 0 andX= 0.1 includingX= 10−2, 10−3, 10−4, 10−5, 10−6that can improve stellar models of hydrogen deficient stars. We implement these new OPLIB radiative opacity tables inMESAand find that calibrated solar models agree broadly with previously published helioseismic and solar neutrino results. We find differences between using the new 1194 OPLIB opacity tables and the 126 OPAL opacity tables range from ≈20% to 80% across individual chemical mixtures, up to ≈8% and ≈15% at the bottom and top of the solar convection zone respectively, and ≈7% in the solar core. We also find differences between standard solar models using different opacity table sources that are on par with altering the initial abundance mixture. We conclude that this new, open-access set of OPLIB opacity tables does not solve the solar modeling problem, and suggest the investigation of physical mechanisms other than the atomic radiative opacity.more » « less
-
Abstract We seek signatures of the current experimental 12 C α , γ 16 O reaction rate probability distribution function in the pulsation periods of carbon–oxygen white dwarf (WD) models. We find that adiabatic g-modes trapped by the interior carbon-rich layer offer potentially useful signatures of this reaction rate probability distribution function. Probing the carbon-rich region is relevant because it forms during the evolution of low-mass stars under radiative helium-burning conditions, mitigating the impact of convective mixing processes. We make direct quantitative connections between the pulsation periods of the identified trapped g-modes in variable WD models and the current experimental 12 C α , γ 16 O reaction rate probability distribution function. We find an average spread in relative period shifts of Δ P / P ≃ ±2% for the identified trapped g-modes over the ±3 σ uncertainty in the 12 C α , γ 16 O reaction rate probability distribution function—across the effective temperature range of observed DAV and DBV WDs and for different WD masses, helium shell masses, and hydrogen shell masses. The g-mode pulsation periods of observed WDs are typically given to six to seven significant figures of precision. This suggests that an astrophysical constraint on the 12 C α , γ 16 O reaction rate could, in principle, be extractable from the period spectrum of observed variable WDs.more » « less
-
Abstract Gravitational-wave (GW) detections of binary black hole (BH) mergers have begun to sample the cosmic BH mass distribution. The evolution of single stellar cores predicts a gap in the BH mass distribution due to pair-instability supernovae (PISNe). Determining the upper and lower edges of the BH mass gap can be useful for interpreting GW detections of merging BHs. We useMESAto evolve single, nonrotating, massive helium cores with a metallicity ofZ= 10−5, until they either collapse to form a BH or explode as a PISN, without leaving a compact remnant. We calculate the boundaries of the lower BH mass gap for S-factors in the range S(300 keV) = (77,203) keV b, corresponding to the ±3σuncertainty in our high-resolution tabulated12C(α,γ)16O reaction rate probability distribution function. We extensively test temporal and spatial resolutions for resolving the theoretical peak of the BH mass spectrum across the BH mass gap. We explore the convergence with respect to convective mixing and nuclear burning, finding that significant time resolution is needed to achieve convergence. We also test adopting a minimum diffusion coefficient to help lower-resolution models reach convergence. We establish a new lower edge of the upper mass gap asMlower≃ M⊙from the ±3σuncertainty in the12C(α,γ)16O rate. We explore the effect of a larger 3αrate on the lower edge of the upper mass gap, findingMlower≃ M⊙. We compare our results with BHs reported in the Gravitational-Wave Transient Catalog.more » « less
-
Abstract Using ground-based gravitational-wave detectors, we probe the mass function of intermediate-mass black holes (IMBHs) wherein we also include BHs in the upper mass gap at ∼60–130 M ⊙ . Employing the projected sensitivity of the upcoming LIGO and Virgo fourth observing run (O4), we perform Bayesian analysis on quasi-circular nonprecessing, spinning IMBH binaries (IMBHBs) with total masses 50–500 M ⊙ , mass ratios 1.25, 4, and 10, and dimensionless spins up to 0.95, and estimate the precision with which the source-frame parameters can be measured. We find that, at 2 σ , the mass of the heavier component of IMBHBs can be constrained with an uncertainty of ∼10%–40% at a signal-to-noise ratio of 20. Focusing on the stellar-mass gap with new tabulations of the 12 C( α , γ ) 16 O reaction rate and its uncertainties, we evolve massive helium core stars using MESA to establish the lower and upper edges of the mass gap as ≃ 59 − 13 + 34 M ⊙ and ≃ 139 − 14 + 30 M ⊙ respectively, where the error bars give the mass range that follows from the ±3 σ uncertainty in the 12 C( α , γ ) 16 O nuclear reaction rate. We find that high resolution of the tabulated reaction rate and fine temporal resolution are necessary to resolve the peak of the BH mass spectrum. We then study IMBHBs with components lying in the mass gap and show that the O4 run will be able to robustly identify most such systems. Finally, we reanalyze GW190521 with a state-of-the-art aligned-spin waveform model, finding that the primary mass lies in the mass gap with 90% credibility.more » « less
-
Abstract We explore changes in the adiabatic low-order g-mode pulsation periods of 0.526, 0.560, and 0.729M⊙carbon–oxygen white dwarf models with helium-dominated envelopes due to the presence, absence, and enhancement of22Ne in the interior. The observed g-mode pulsation periods of such white dwarfs are typically given to 6−7 significant figures of precision. Usually white dwarf models without22Ne are fit to the observed periods and other properties. The rms residuals to the ≃150−400 s low-order g-mode periods are typically in the range ofσrms≲ 0.3 s, for a fit precision ofσrms/P≲ 0.3%. We find average relative period shifts of ΔP/P≃ ±0.5% for the low-order dipole and quadrupole g-mode pulsations within the observed effective temperature window, with the range of ΔP/Pdepending on the specific g-mode, abundance of22Ne, effective temperature, and the mass of the white dwarf model. This finding suggests a systematic offset may be present in the fitting process of specific white dwarfs when22Ne is absent. As part of the fitting processes involves adjusting the composition profiles of a white dwarf model, our study on the impact of22Ne can provide new inferences on the derived interior mass fraction profiles. We encourage routinely including22Ne mass fraction profiles, informed by stellar evolution models, to future generations of white dwarf model-fitting processes.more » « less
-
Abstract The gravitationally lensed star WHL 0137–LS, nicknamed Earendel, was identified with a photometric redshift z phot = 6.2 ± 0.1 based on images taken with the Hubble Space Telescope. Here we present James Webb Space Telescope (JWST) Near Infrared Camera images of Earendel in eight filters spanning 0.8–5.0 μ m. In these higher-resolution images, Earendel remains a single unresolved point source on the lensing critical curve, increasing the lower limit on the lensing magnification to μ > 4000 and restricting the source plane radius further to r < 0.02 pc, or ∼4000 au. These new observations strengthen the conclusion that Earendel is best explained by an individual star or multiple star system and support the previous photometric redshift estimate. Fitting grids of stellar spectra to our photometry yields a stellar temperature of T eff ≃ 13,000–16,000 K, assuming the light is dominated by a single star. The delensed bolometric luminosity in this case ranges from log ( L ) = 5.8 to 6.6 L ⊙ , which is in the range where one expects luminous blue variable stars. Follow-up observations, including JWST NIRSpec scheduled for late 2022, are needed to further unravel the nature of this object, which presents a unique opportunity to study massive stars in the first billion years of the universe.more » « less
An official website of the United States government
